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Abstract. At present there is a strong tendency to use new methods for the description of the regional and
spatial economy. In increasing frequency we consider that any economic activity is spatially dependent.
The problem of the evolution of internal urban formation can be described with the exact supposition. So
that is why we use partial derivative equations set with the appropriate boundary and initial conditions
for the solving the problem of the urban evolution. Here we describe the model of urban population’s
density modification taking into account a modification of the housing quality. A program has been created
which realizes difference method of mixed problem solution for population’s density. For the wide class of
coefficients it has been shown that the problem’s solution “quickly forgets” the parts of the initial conditions
and comes out to the intermediate asymptotic form, which nature depends only on the problem’s operator.
Actually it means that the urban structure does not depend on external circumstances and is formed by
the internal structure of the model.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 89.65.Lm Urban
planning and construction

1 Introduction

All sorts of economical activity is brought into correlation
with the certain place and time, thus while considering
evolutional systems we must take into account the spatial
dependence. Due to the progress in transportation and
communication facilities the interaction between different
economical agents is getting more and more dependent
on their location. It is very important to realize and to
describe characteristics of these spatial interactions. As a
consequence of technological progress and changes in peo-
ple’s behavior urban problems have become more compli-
cated. Nowadays, the increasing spatial and time variety of
the passing urban processes characterize urban systems.
Such metropolises like New York, Stockholm, Paris and
Tokyo have the most complicated urban structure. Urban
centralization can be found either in highly developed or in
less developed countries, but in highly developed countries
decentralization processes have become apparent. In par-
ticular European Union has a great influence upon these
processes. There are a lot of geographical and urban mod-
els, which describe current and future urban processes.
Nowadays there are three basic approaches. The first one
is called neoclassical urban economy. Urban economists
developed it in the end of 19th century. Since 1860-s a
lot of models have appeared. But this approach is seri-
ously limited by the analysis of the equilibrium positions.
In the second approach (e.g. Wilson) time and place are
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very important. However as the area is divided into dis-
crete zones, there is no chance to explain inner structure
of urban areas. The third approach is called “spatial dy-
namic approximation”. It is using continuous area for the
solving dynamic problems. Beckman and Puu based upon
von Tuhnen’s method. They supposed that economical ac-
tivity is spatially dependent by itself [1–3]. The spatial
density describes this activity. So the problem of urban
evolution is described by the partial derivative equations
with the corresponding initial and boundary conditions.

2 The model of urban system considering
the spatial diffusion
Let’s describe a modification model [4] of the frequency
distribution of the urban population in the urban area.
We assume a modification of the housing quality. Let us
consider heterogeneous urban system, which is character-
ized by the functions below:

u(x, y, t) — population density in the point M(x, y) at
time t,
q(x, y, t) — housing quality (cost of realty) in the
point,
M(x, y) at time t,

where r =
√

x2 + y2 is a destination between the “down-
town” and the place of residence.

We do not take into account the demographical and
migration processes between the city and neighbor re-
gions. Considering urban population’s diffusion we can
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describe urban system as follows:
⎧
⎪⎨

⎪⎩

ut = α(f(q) − u) + div(θgradu),

qt = −δq + H(I(i, q)),

M(x, y) ∈ G.

(1)

where G is a concerned region of urban space, α — adap-
tation parameter, θ — population’s diffusion coefficient,
δ — housing fracture velocity. Note that coefficient θ can
depend on u and q, and also on x, y and t. We do not
consider a diffusion modification of the housing quality,
so the equation for q is an ordinary differential one. Note
that one-dimensional variant of this model was suggested
by Zhang.

For the u function we have a boundary condition of a
third kind at the boundary of G area:

θ
∂u

∂n
+ βu|∂G = 0, (2)

if β = 0, then boundary condition

∂u

∂n
|∂G = 0 (3)

means that during concerned period there is no changes in
population. If t = 0 we have additional initial conditions
for u and q: {

u|t=0 = u0(x, y),

q|t=0 = q0(x, y).
(4)

Eventually the second equation in system (1) describes
modification of the housing quality. Term δq with mi-
nus, which is a part of this equation, describes housing
destruction effects. We consider that the owners who de-
fine the quantity of expenses maintain housing conditions.
So the housing price depends on the rent revenue of the
owner. Let the total income be defined as I. The income in
the fixed point depends on the density of population and
housing quality, that is I = I(u, q). The derivative ∂I/∂u
of this functional has no definite sign and the derivative
∂I/∂q is above zero. Under the constant level of q the
sign of ∂I/∂u generally is not definite because increase
or decrease of the income depends on the current sit-
uation. Derivative ∂I/∂q is above zero because housing
quality improvement under fixed level of population den-
sity has to lead to the increasing of owner’s income. We
suppose that housing maintenance expenses are positively
connected with the income, that is dH/dI > 0. Simply we
define expenditure function for the maintenance expenses
as follows:

H(I) =
µuq2

1 + σu
(5)

where µ and σ are positive coefficients. If we interpret

q2

1 + σu
(6)

as a housing rent, then

uq2

1 + σu
(7)

will be total income of the housing owner into the cur-
rent point. Parameter µ can be considered as a ratio of
maintenance expenses and total income.

As a first step of this model research we limit ourselves
with the one-dimensional analysis when functions u and q

depends on r and t, where r =
√

x2 + y2 is a destination
between the “down-town” and the place of residence.

Let us make all the variables dimensionless correspond-
ing the formulas below:

αt → t, q =
µQ

ασ
, u =

U

σ
, , k =

θ

α
, ν =

δ

α
,

g(Q) = σf

(
µQ

ασ

)
. (8)

Then the mathematical problem of determination U
and Q functions will be:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U
∂t = g(Q) − U + 1

r
∂
∂rk(U, Q, r, t)r ∂U

∂r ,

∂Q
∂t = −νQ + UQ2

1+U ,

k(U, Q, r, t)r ∂U
∂t + βU |r=1 = 0,

U |t=0 = U0(r),

Q|t=0 = Q0(r).

(9)

The question concerning unique existence of problem’s so-
lution is not very simple but for the wide class of nonlin-
ear coefficients unique existence theorems of the classical
problem’s solution are still valid.

It seems very interesting to study a solution’s behav-
ior of the system (9) against initial conditions, especially
the existence of the intermediate asymptotic forms. They
exist when the solution “quickly forgets” the parts of the
initial conditions and develops according to the internal
structure of the model.

For the computational solution of the system (9) we
take difference scheme with the second level of the ap-
proximation upon the radius and with the first level upon
the time.

2.1 Diagnostics of the computational experiment

For the software implementation of the problem solution
we choose C++Builder. The special dialogue interface has
been created with the dialogue boxes which let input ini-
tial conditions: initial and boundary conditions,number of
points N , in which we divide segment [0, 1], time step τ ,
bifurcation parameter ν, coefficient β in the boundary con-
dition of the third level. Diagrams show dependence of the
final solution during the last time layer on the destina-
tion between the “down-town” and the place of residence.
The first line is demonstrating density population behav-
ior and the other one is showing a behavior of normal-
ized density population that is U/max(U). We investigate
solution launching on the intermediate asymptotic forms
calculating normalized population density U/max(U) on
every step of the problem’s solving.
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Fig. 1. A homogeneous distri-
bution of functions.

Fig. 2. Intermediate asymp-
totic form.

Fig. 3. “Saw” proves that so-
lution is unstable.

3 Results of the computational experiments.
Investigation of mixed problem solution’s
behavior for the different functions k(U)
and g(Q)

3.1 Investigation of solution’s behavior for k(U) = U
and g(Q) = Q

Let’s consider homogeneous distribution of U and Q func-
tions across the area, that is U(r, 0) = 1, Q(r, 0) = 1.
Bifurcation parameter ν = 0, 5 (Fig. 1).

Computational modelling shows that starting with
t = 1.5 solution comes to the intermediate asymptotic
form. That means normalized profile of density is not
changing as time goes by. At the same time function is
monotonously tending to zero (Fig. 2).

If bifurcation parameter ν is equal to 0.1 with the same
initial and boundary conditions, then solution becomes
unstable. Figure 3 can illustrate this. We can see the so-
called “saw”, which proves that solution is unstable. Thus
we can conclude that there is no solution of this problem
in the late times.
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Fig. 4. Trigonometrical form.

Fig. 5. Population density
is moving to the intermediate
asymptotic form.

Fig. 6. Intermediate asymp-
totic form.

3.2 Population density — trigonometrical form

Let us take the following initial conditions:

U(r, 0) = 1 + 0, 9 sin(10πr)
Q(r, 0) = 1
ν = 0.5.

(10)

As time goes by the system “quickly” forgets details of
the initial conditions. In Figure 5, you can see transfor-
mation of sinusoid into the curve which form similar to

another one from the example where U = 1. During the
later point of time solution again comes to the intermedi-
ate asymptotic form, which can be proved by the diagram
of the normalized density.

In the point of time t = 4 diagram is quite similar
with case when U(r, 0) = r3(1 − r)2; Now we consider
cases where we have changes in function g(Q). Note, that
initial conditions are still remaining the same.



E.Y. Echkina et al.: A selfsimilar behavior of the urban structure in the spatially inhomogeneous model 219

Fig. 7. Starting moment.

Fig. 8. Final result.

Fig. 9. Intermediate asymp-
totic form is similar to the
form from previous case.

3.3 Investigation of the solution’s behavior
for the functions k(U) = U and g(Q) = Q4

Let g(Q) = Q4, k(U) = U . Let us consider how solution
can be changed if:

U(r, 0) = 1 + 0, 9 sin(10πr)
Q(r, 0) = 1
ν = 0.5.

(11)

The solution is faster tending to zero. However if we re-
ceive an intermediate asymptotic form (Fig. 8).

Now we consider U(r, 0) = r3(1 − r)2. As in previous
case to the moment t = 3 solution has already come to the
intermediate asymptotic form. So we can see again that

initial conditions’ details make no influence on the current
situation. Normalized density is not changing in fact. We
assume, that normalized density profile remains similar as
in cases with another initial conditions. It differs from the
profile which we received for g(Q) = Q, but similar for the
different initial conditions.

3.4 Investigation of the solution’s behavior
for the functions k(U) = eU and g(Q) = Q4

Since the aim of this work is finding out how the initial
conditions (k(U) and g(Q))influence on the final solution,
we can consider situation when k(U) = eU . We can take
the same three functions as initial conditions like in pre-
vious two cases.
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Fig. 10. Problem’s solution
faster comes to the interme-
diate asymptotic form.

Fig. 11. Solution is situated
higher then its analogues for
other initial conditions.

So,
U(r, 0) = r3(1 − r)2
Q(r, 0) = 1
g(Q) = Q4

k(U) = eU

ν = 0.5.

(12)

It is clear that normalized density profile has changed in
comparison with the case above. It has become flatter and
the problem’s solution faster comes to the intermediate
asymptotic form (Fig. 10). The same situation can be seen
if U(r, 0) = 1 + 0, 9 sin(10πr).

The single difference consists in the following thing. If
t = 2, solution is situated higher then its analogues for
other initial conditions. Though normalized density has
remained the same (Fig. 11).

4 Conclusion

We have made a computational simulation of the urban
population density dynamics with the consideration of the
housing quality modification. We have created a model
consisting of a partial derivative equation of parabolic type
and general differential equation. For the wide class of co-
efficients we have shown that problem’s solution “quickly
forgets” details of initial conditions and comes to the in-
termediate asymptotic form, which characterizes by the

operator of the system only. In fact this means that ur-
ban system does not depend on the external circumstances
and defines by the internal structure of the model. There
are enormous variants of different conditions, which one
can choose. So the investigation of all possible variations
seems to be separate and rather difficult problem. Possi-
bly, classification of the conditions should be made using
data about real processes of urban formation and con-
sidering opinions of the geographers. The solution of this
problem will be the next step to the understanding such
problems as distribution of the population inside urban
area, urban structure evaluation and other problems of
urbanistics.
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